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ABSTRACT

Geometric transformations such as scaling or rotation are common tools employed by forgery creators. These
procedures are typically based on a resampling and interpolation step. The interpolation process brings specific
periodic properties into the image. In this paper, we show how to detect these properties. Our aim is to detect
all possible geometric transformations in the image being investigated. Furthermore, as the proposed method, as
well as other existing detectors, is sensitive to noise, we also briefly show a simple method capable of detecting
image noise inconsistencies. Noise is a common tool used to conceal the traces of tampering.
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1. INTRODUCTION

The digital information revolution and issues concerned with multimedia security have also generated several
approaches to tampering detection. Generally, these approaches could be divided into active and passive–blind
approaches. The area of active methods simply can be divided into the data hiding approach1,2 and the digital
signature approach.3–5 The area of blind methods tries to verify the integrity of digital images and detect the
traces of tampering without using any protecting pre–extracted or pre–embedded information. This area is
regarded as a new direction and is growing noticeably. Number of published papers6–10 is growing and results
obtained promise a significant improvement in forgery detection.

Geometric transformations such as scaling or rotation are common tools employed by forgery creators. There
are two basic steps in geometric transformations. In the first step a spatial transformation of the physical
rearrangement of pixels in the image is done. Coordinate transformation is described by a transformation
function which maps the coordinates of the input image pixel to the point in the output image (or vice versa).
The second step in geometric transformations is called the interpolation step.11–13 Here pixels intensity values
of the transformed image are assigned using a constructed low–pass interpolation filter, w. To compute signal
values at arbitrary locations, discrete samples are multiplied with the proper filter weights when convolving
them with w. This step brings into the image detectable periodic properties. We will be concerned mainly with
following low–order piecewise local polynomials: nearest–neighbor, bilinear and bicubic. These polynomials are
used extensively because of their simplicity and implementation unassuming properties.

We analytically show periodic properties present in the covariance structure of interpolated signals. Further-
more, we briefly show a blind method capable of detecting the traces of interpolation. The method is a modified
version of14 and is based on a set of derivative filters and radon transformation. Modifications are done in order
to achieve the main goal of this paper. Our aim is to analyze how helpful is method in detecting and describing
all geometric transformations present in the image. In other words, for example, when an image has undergone
both a dominant geometric transformation and a minor geometric transformation, we would like to detect both
of them and generate suitable data for describing them (resizing factors and rotation angles).

The presented method, as other existing resampling detection methods, is sensitive to noise. Adding noise
to forged image regions is a commonly used tool to conceal the traces of forgery. The noise degradation causes
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that detectable periodic correlations brought into the signal by the interpolation process become corrupted and
difficult to detect. Therefore, after testing a region for the traces of interpolation, the noise level consistency of
the image can also be analyzed. If the local random noise has been used to conceal the traces of interpolation,
the method detects it. The method also can be useful in the cases, when the image being investigated is consisted
of several parts coming from different sources with different noise properties.

The rest of the paper is organized as follows. The next section summarizes previous published papers
concerned with the detection of scaling and rotation. After this, some basic notations and definitions are given
to build up the necessary mathematical background. Section 4 analyzes and analytically shows hidden periodic
properties present in interpolated signals. Section 5 introduces a method capable of detecting the traces of scaling
and rotation. The following section proposes a method capable of segmenting an investigated image using the
local noise level. Section 7 contains experiments to demonstrate the outcomes of presented methods. In the last
section, important properties of the method and results obtained are discussed.

2. RELATED WORK

In order to detect the traces of resampling, Alin C. Popescu and Hany Farid15 analyzed the imperceptible
specific correlations brought into the resampled signal by the interpolation step and proposed a resampling
detector based on an expectation/maximization algorithm. Babak Mahdian and Stanislav Saic14 proposed a
method for detecting the traces of interpolation based on a derivative operator and radon transformation. Sevinc
Bayram et al.16 analyzed several sets of features for detecting various common image processing operations by
constructing classifiers using features based on binary similarity measures, image quality metrics, higher–order
wavelet statistics and a feature selection approach. Matthias Kirchner17 proposed a resampling detection method
based on linear filtering and cumulative periodograms. S. Prasad and K. R. Ramakrishnan18 analyzed several
spatial and frequency domain techniques to detect the traces of resampling. Their most promising method is
based on zero-crossings of the second difference signal.

3. BASIC NOTATIONS AND PRELIMINARIES

We assume the following simple, linear and stochastic model:

f(x) = (u ∗ h)(x) + n(x) (1)

where f , u, h, ∗, and n are the measured image, original image, system PSF, convolution operator, and random
variable representing the influence of noise sources statistically independent from the signal part of the image.
We assume that E{n(x)} = 0. If we consider the first part of (1) to be deterministic, the covariance of (1) can
be shown to be Rf (x1, x2) = Cov{f(x1), f(x2)} = E{(f(x1) − f(x1))(f(x2) − f(x2))} = Cov{n(x1), n(x2)} =
Rn(x1, x2), where Rf is the covariance matrix of measured image f(x), and Rn is the covariance of random
process n(x).

We will denote by fk a discrete signal representing the samples of f(x) at the locations k∆x, fk = f(k∆x),
where ∆x ∈ R+, is the sampling step and k ∈ N0.

For the sake of simplicity we introduce the operator Dn{•}, n ∈ N0, which is defined in the following way:
Dn{f}(x) = f(x) for n = 0 and Dn{f}(x) = ∂nf(x)

∂xn for n ∈ N . In other words, D0{f}(x) is identical to f(x)
and Dn{f}(x), where n > 0, is the nth derivative of f(x). In discrete signals derivative is typically approximated
by computing the finite difference between adjacent samples.

4. PERIODIC PROPERTIES OF INTERPOLATION

Combining the derivative theorem with the convolution theorem leads to the conclusion that by convolution
of fk with a derivative filter Dn{w}, we can reconstruct the nth derivative of f(x). We denote the result of
interpolation operation by fw(x), respectively by D{fw}(x), where w denotes the interpolation filter. Formally,

Dn{fw}(x) =
∞∑

k=−∞

fkDn{w}( x

∆x
− k) (2)



As pointed out in14 it is easy to show that the covariance function of an interpolated image or its derivative
is given by:

RDn{fw}(x, x + ξ) =
∞∑

k1=−∞

∞∑
k2=−∞

Dn{w}( x

∆x
− k1) · Dn{w}(x + ξ

∆x
− k2)Rf (k1, k2) (3)

If we assume constant variance random process, then the variance of Dn{fw}, var{Dn{fw}(x)}, as a function
of the position x can be represented in the following way:

var{Dn{fw}(x)} = RDn{fw}(x, x) = σ2
∞∑

k=−∞

Dn{w}( x

∆x
− k)2 (4)

where σ2 = Rn(k1, k2). This equation can be obtained if Rf (k1, k2) has a short–range correlation.19

Now, as pointed out in,14 by assuming that ϑ ∈ Z, we can notice that:

var{Dn{fw}(x + ϑ∆x)}

=σ2
∞∑

k=−∞

Dn{w}(x + ϑ∆x

∆x
− k)2

=σ2
∞∑

k=−∞

Dn{w}( x

∆x
− (k − ϑ))2

=var{Dn{fw}(x)}

(5)

In other words, var{Dn{fw}(x)} is periodic over x with period ∆x.

The theory studied in this section can be analogously extended for the multidimensional cases.14

5. IDENTIFICATION OF GEOMETRIC TRANSFORMATIONS

In this section we describe a method based on a modified version of our previous work.14 Modifications are done
with the goal to make possible detecting all present geometric transformations. The method is based on a few
main steps: ROI selection, a set of derivative filters, radon transformation and search for periodicity step. Each
step is explained separately in the following sections.

5.1 Region of Interest Selection

A typical image, f(x, y), consists of a discrete set of regions corresponding to objects needing verification. To
investigate if any of these regions have been resampled we select this region by a block of R×R pixels (we denote
this block by b(x, y)) and apply the method to this image subset.

5.2 Signal Derivatives

To emphasize the periodic properties present in a geometrically transformed image, a set of derivatives of b(x, y)
is computed. The derivative operators of various orders are applied in x–direction (we denote this by Dn

r {b(x, y)})
and separately in y–direction to b(x, y) (we denote this by Dn

c {b(x, y)}). Often image derivative characteristics
are different in vertical and horizontal directions. We employ basic derivative filters. For example, for n = 1,
filters are specified by: hx = hT

y = [1 − 1]. When an image contains two geometric transformations, one
dominant transformation (bringing a high degree of correlation into the image) and a transformations bringing
a much smaller degree of correlation into the signal, the set of derivatives easily allows us to detect both present
transformations. Derivatives work like band-pass filters. In our experiments, the derivatives of order n = 2, 5, 9
are used.

Please note that all steps described bellow are applied separately to each Dn
r {b(x, y)} and Dn

c {b(x, y)}.



5.3 Radon Transformation

In order to find the traces of scaling and rotation, we employ the radon transformation. The radon transformation
computes projections of magnitudes of Dn

r {b(x, y)} and Dn
c {b(x, y)} along specified directions determined by

angle θ.

The projection is a line integral in a certain direction. The radon transformation is computed at angles θ
from 0 to 179◦, in 1◦ increments. Hence, the output of this section is 180 one–dimensional vectors, ρθ, for each
derivative signal.

5.4 Search for Traces of Geometric Transformation

As mentioned previously, each derivative signal and its radon transformation is analyzed separately. For each
one, we obtain 180 one–dimensional vectors, ρθ. If the investigated region has been resampled, corresponding
auto–covariance sequences of ρθ contain a specific periodicity. The autocovariance can be computed as Rρθ

(k) =∑
i(ρθ(i + k) − ρθ)(ρθ(i) − ρθ). To emphasize and easily detect the periodicity, a derivative filter of order one

is applied to vectors ρθ. We denote this by ρ̃θ. After this, in order to easily exhibit strong peaks signifying
interpolation, the magnitudes of the Fast Fourier transformation of obtained sequences Rρ̃θ

are computed. To
easily detect the traces of interpolation, the magnitudes of FFT, |FFT(Rρ̃θ

)|, are all combined together by taking
the maximum value at each frequency. As it will be apparent from experiments, if the analyzed region contains
interpolation, peaks in the spectrum are very clear and cannot be missed. The spectrum of such a signal has
totally different properties of those of non–interpolated signals (see Figures 1 and 3).

Position of peaks are directly related to parameters of geometric transformations present in the image being
analyzed.14 To automatically detect the interpolation peaks, we apply a simple and strict threshold–based peak
detector searching for the local maximum (peaks n times greater than a local average magnitude). To determine
whether a detected peak corresponds to rotation or resizing, simply the origin of the peak is analyzed. If it comes
from ρ0, then it belongs to a resizing operation.

6. IMAGE NOISE INCONSISTENCIES DETECTION

We will assume white Gaussian noise n(x, y) with variance σ2 which can spatially vary (we assume that σ2 is
a piece–wise constant function). We will define the problem in the following way. Given an image containing
a discrete set of regions with different noise levels, our task is to determine the presence of such regions and to
localize them. The proposed method is based on a few main steps: wavelet transform, tiling sub–band HH1

with non-overlapping blocks, blocks noise level estimation and blocks merging.

Numerous methods have been proposed so far to perform the noise level estimation in digital images. Gen-
erally, these methods can be divided into following groups:20

• block–based,

• smoothing–based,

• gradient–based.

In our method, the most widely used technique for estimating the variance of the noise on a wavelet component
is employed. Wavelet–based noise estimation is a special case of gradient–based methods, where the gradient
amplitudes are obtained from the wavelet decomposition.

The HH1 sub–band of the wavelet transform gives the diagonal details of the highest resolution. Our method
begins with tiling this sub–band by non-overlapping blocks Bi of R×R pixels. Blocks are assumed to be smaller
than the size of the additive noise corrupted regions, which have to be detected. Alternatively, an operator
can manually divide the image into different portions whose integrities are in question and where we wish to
strengthen our evidence.

If we assume the noise is Gaussian, the following robust MAD–based estimator can be employed:21 σ̂ =
MADHH1

0.6745 where σ̂ denotes the standard deviation of noise and MADHH1 stands for median absolute deviation



of the diagonal sub–band of the first decomposition level (HH1). The median measurement is insensitive to
isolated outliers of potentially high amplitudes.

Once the noise standard deviation of each block is estimated, their consistencies can be analyzed in various
ways. In our method, we segment the image into several connected homogenous sub–regions. The homogeneity
condition is the estimated noise standard deviation of each block. The segmentation is carried out by employing
a simple threshold–based region merging technique. The merging technique starts with individual blocks and
iteratively merges similar neighboring ones. The output of this step is a map showing partitions with similar
standard deviation of noise. For an example, see Figure 3. In this example the parameters of the method were
set to R = 40 and T = 2 (similarity threshold used for merging the blocks). The selected method’s parameters
were determined experimentally to yield a good tradeoff between the size of the minimum detectable region and
noise variance estimation ability.

Figure 1. Shown are: (a) the investigated region b(x, y) (denoted by a black box, 256 × 256 pixels); the output of the
resampling detection method using D2

r{b(x, y)} (figure b); D5
r{b(x, y)} (figure c) and D9

r{b(x, y)} (figure d). Peaks belong
to the resizing operation. The investigated image was resized by factor 1.9 using the bicubic interpolation.

Figure 2. Shown are: (a) the investigated region b(x, y) (denoted by a black box, 256 × 256 pixels); the output of the
resampling detection method using D2

r{b(x, y)} (figure b); D5
r{b(x, y)} (figure c) and D9

r{b(x, y)} (figure d). In (d) both
resizing and rotation peaks are detected. The investigated image was rotated by angle 9◦ and then resized by factor 1.9
using the bicubic interpolation.

7. EXPERIMENTAL RESULTS

Figures 1 and 2 show outputs of the method applied to a uncompressed image that have undergone various
transformations. Shown are the outcomes based on rows derivatives. The size of the investigated region (denoted
by a black box) in all cases is 256 × 256 pixels. It is apparent that peaks signifying interpolation are clearly
detectable. Figure 2 shows the advantages of using various derivative filters. As shown, derivative of order
9 allowed to also detect the rotation transformation, which has been applied to the image before a dominant
resizing operation (resizing factor 1.9).



Figure 3. Shown are the original image (a), the doctored image containing a forged resized region additionally corrupted
by local additive white Gaussian noise with σ = 5(b), output of the resampling detection method (due to noise it failed)
(c) and output of the noise inconsistencies detection method applied to the doctored image (b).

In the second part of this section, a quantitative measure of the efficiency of the proposed interpolation
detection method is carried out. The method has been applied to 20 images corrupted by various transformations.
The size of test images was 256×256 pixels. In all cases the bicubic interpolation method was used. The method
was applied separately to rows and columns of tested images. All experiments were carried out in Matlab.

Table 1 shows the detection accuracy of the method applied to uncompressed resized images. The detection
accuracy expresses the success of the method in expressing the present geometric transformations by clear and
easily detectable peaks, either in row–based or column–based output obtained from any of derivative signals.
Table 2 shows the detection accuracy of the proposed method applied to rotated images. Table 3 shows the
detection accuracy of the method for affine transformation (resizing followed by rotation). Here, the detection
accuracy expresses the success of the method in detecting both present geometric transformations. Noisy images
were obtained by adding white gaussian noise to the transformed images. During the experimental phase, the
method was also applied to the original (non–interpolated) versions of tested images. This resulted in a false
positive rate of 10%.

For correctly detected resized images, we tried also to estimate the particular scaling factors using the position
of the occurred corresponding peaks. This was carried out for scaling factors greater than 1.05 shown in Table
1. The estimation accuracy was near 100%. The same was carried out for rotated TIFF format images (for
rotation angles greater than 5◦ shown in Table 2). Also here, based on the interpolation peaks positions, we
tried to estimate the particular rotation angles. The detection accuracy was again near 100%.

A quantitative measure of the efficiency of the noise estimation method was also carried out. Experimental
results are obtained by applying the estimator to 20 non–compressed test images corrupted by additive Gaussian
noise with various standard deviations. Here, the size of test images was 512 × 512 pixels. These images were
tiled by non–overlapping blocks of various sizes. The method was applied to each block separately. In other



words, each analyzed noise standard deviation corresponds to 20 × b 512
R c × b 512

R c estimations, where R is the
block’s size. Obtained results are shown in Table 4 and Table 5 in terms of mean value of σ estimation (¯̂σ),
average error (Ē) and its standard deviation (σE), maximum and minimum obtained absolute errors (maxEi

and
minEi

). Statistics were obtained as a function of different noise standard deviations σ = 0 (noise–free image),
2, 3, 5, 7, 10, 15, 20 and 25.

Table 1. Detection accuracy [%] as a function of different scaling factors. Each cell corresponds to the average detection
accuracy from 20 images.

scaling factor 1.05 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90
TIFF 100 100 100 100 100 100 100 100 100 100
SNR 30 dB 95 100 100 100 100 100 100 100 100 100

Table 2. Detection accuracy [%] as a function of different rotation angles. Each cell corresponds to the average detection
accuracy from 20 images.

rotation angle 5◦ 10◦ 15◦ 20◦ 30◦ 40◦

TIFF 100 100 100 100 100 100
SNR 30 dB 95 100 100 100 90 90

Table 3. Detection accuracy [%] for resizing followed by rotation. Each cell corresponds to the average detection accuracy
from 20 images.

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
5◦ 100 100 100 100 95 90 85 85 95
10◦ 95 100 100 90 100 95 90 90 95
20◦ 45 100 95 85 90 90 95 90 90
30◦ 95 95 100 95 90 90 80 90 85
40◦ 100 100 95 90 90 90 85 90 90

Table 4. Shown are the statistics of estimated noise standard deviations mean(σ̂), Ē, σE , max(Ei) and min(Ei) as
functions of different σ. These statistics have been obtained by analyzing 2880 non–overlapping blocks of size 40 × 40
from 20 images of size 512× 512.

TIFF
σ ¯̂σ Ē σE maxEi minEi

0 1.90 1.90 1.10 9.70 0.00

2 3.00 0.99 0.80 7.40 0.00

3 3.80 0.82 0.69 6.90 0.00

5 5.50 0.66 0.57 5.70 0.00

10 10.00 0.70 0.66 4.70 0.00

15 15.00 0.93 0.97 6.90 0.00

20 20.00 1.30 1.40 10.00 0.00

25 24.00 1.70 1.80 13.00 0.00

Table 5. Shown are the statistics of estimated noise standard deviations mean(σ̂), Ē, σE , max(Ei) and min(Ei) as
functions of different σ. These statistics have been obtained by analyzing 1280 non–overlapping blocks of size 64 × 64
from 20 images of size 512× 512.

TIFF
σ ¯̂σ Ē σE maxEi minEi

0 1.80 1.80 1.00 5.50 0.00

2 3.00 0.96 0.72 4.10 0.00

3 3.80 0.79 0.61 3.60 0.00

5 5.50 0.61 0.48 3.10 0.00

10 10.00 0.55 0.57 4.30 0.00

15 15.00 0.70 0.88 6.60 0.00

20 20.00 0.95 1.30 9.50 0.00

25 24.00 1.30 1.70 11.00 0.00



8. DISCUSSION

In this paper we extended our previous work.14 In that work, our aim was to detect whether the image being
investigated contains any traces of interpolation. Here, our goal was to analyze whether the presented method
can be helpful in detecting all geometrical transformations present in the image. Experiments showed that by
using a combination of filters, traces of most geometrical transformations present in the image can be found
and the position of their corresponding peaks used to easily determine the scaling factors or rotation angles. A
weakness of this approach is that some transformations have indistinguishable periodic patterns in the output
of the method. The main advantage of the method is that it makes possible in a simple and fast way find traces
of general affine transformation.

The proposed method works well for low order interpolation polynomials: nearest neighbor, linear or cubic.
The detection performance decreases as the order of interpolation polynomial increases. Different interpolation
orders introduce correlations of varying degrees between neighboring samples. These correlations become more
difficult to detect as each interpolated sample value is obtained as a function of more samples. Furthermore,
like other existing methods, our approach has weak results when the interpolated images is altered by further
operations like noise addition, linear or median filtering. These operations make the interpolation–based pixels
correlation corrupted and difficult to detect. By applying the method to JPEG compressed images, the detection
performance decreases. JPEG is a lossy compression format. It brings noise into the image. Experiments show
that the presented method works well for JPEG compression quality of 95 - 100. But, generally, the results
obtained are based on image properties.

Obtained results of the noise inconsistencies detection part show that the proposed method makes it possible
in a simple and blind way to divide an investigated image into various segments with homogenous noise level. The
main weakness of the noise inconsistencies detection method is that authentic images also can contain various
isolated regions with totally different variances (non–stationarity). Therefore the method is more appropriate as
a supplement to other forgery detection methods than a stand alone detector.

Typically, this method is not able to find the corrupted regions, when the noise degradation is very small
(σ < 2). However, please note that this is not a significant limitation. When the method is used as a supplement
to resampling detector, in the case of minor noise degradation, the resampling detector does not fail.

In this work we have been concerned with gray-level images. There are several ways to adopt the presented
methods for RGB images. For instance, the method can be applied to each channel separately.
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